Saturday, 9 April 2016


1. IDEAL LPF:

clc;
close all;
clear all;

        a=imread('circuit.tif');  % reading an image X
        a=double(a);
        c=size(a);
       N=c(1);
        D0=input('Enter the cut-off frequency:  ');
        for u=1:1:c(1)
        for v=1:1:c(2)
        D=((u-N/2))^2+((v-(N/2))^2)^0.5;
         if D<D0;
             H(u,v)=1;
         else
             H(u,v)=0;
         end
        end
        end
       vv=fft2(a);
       vc=fftshift(vv);
       x=vc.*H;
       X=abs(ifft2(x));
        figure;
        imshow(uint8(a));
        title('original image'),
         figure;
        imshow(uint8(X));
       title('practical by shruti naik');
        figure;
        mesh(H);
      figure;

      imagesc(H),colormap(gray);


2. BUTTERWORTH LPF:

img=im2double(imread('circuit.tif'));
figure(1)
imshow(img)
title('ORIGINAL IMAGE');
[M N] = size(img); % Saving the the rows of image in M and columns in N

filter=zeros(M,N);
f_transform=fft2(img); %Fourier transformed of an image
f_shift=fftshift(f_transform);

d0=100; %10 %210            %Cutoff Frequency
n=2;                %Order of butterworth filter

    for i=1:M
        for j=1:N
            distance=(i-M/2)^2 + (j-N/2)^2;   %distance between pt.(m,n)
            low_filter(i,j)= ( 1 + (distance/d0)^(2*n))^(-1);  %butterworthlpf formula
        end
    end
filter_apply=f_shift.*low_filter;
image_orignal=ifftshift(filter_apply);
image_filter_apply=abs(ifft2(image_orignal));
figure(2)
imshow(image_filter_apply,[])
title('practical performed by shruti');
figure(3)
mesh(low_filter), figure(4)
imagesc(low_filter),colormap(gray);
3. GAUSSIAN LPF:

a=im2double(imread('circuit.tif'));
figure(1)
imshow(a)
title('original image')
[m n]=size(a); % Saving the the rows of image in M and columns in N
f_transform=fft2(a);
f_shift=fftshift(f_transform);  %Fourier transformed of an image
p=m/2;
q=n/2;
d0=25; %Cutoff Frequency and the sigma value
for i=1:m
for j=1:n
distance=sqrt((i-p)^2+(j-q)^2);  
low_filter(i,j)=exp(-(distance)^2/(2*(d0^2)));  
end
end
filter_apply=f_shift.*low_filter;
image_orignal=ifftshift(filter_apply);
image_filter_apply=abs(ifft2(image_orignal));
figure(2)
imshow(image_filter_apply,[])
title('practical performed by shruti')
figure(3)
mesh(low_filter)
figure(4)
imagesc(low_filter),colormap(gray);
4. IDEAL HPF:

clc;
a=imread('circuit.tif');
a=double (a);
[row col]=size(a);
set=input('Enter the value of the cut off frequency: ');
for u=1:1:row
for v =1:1:col
D=((u-(row/2))^2+(v-(col/2))^2)^0.5;
if D<set;
H(u,v)=0;
else
    H(u,v)=1;
end
end
end
vv=fft2(a);
vc=fftshift(vv);
x=(vc.*H);
X=abs(ifft2(x));
%Plotting%
figure(1)
imshow(uint8(a));
figure(2)
imshow(uint8(X));
figure(3)
imagesc(H),colormap(gray);
figure(4)
mesh(H);

5. BUTTERWORTH HPF:

img=im2double(imread('circuit.tif'));
figure(1)
imshow(img)
title('ORIGINAL IMAGE');
[M N] = size(img);

filter=zeros(M,N);
f_transform=fft2(img);
f_shift=fftshift(f_transform);

d0=150;             %Cutoff Frequency
n=2;                %Order of butterworth filter

    for i=1:M
        for j=1:N
            distance=(i-M/2)^2 + (j-N/2)^2;
            hf(i,j)= ( 1 + (d0/distance)^(2*n))^(-1);
        end
    end
filter_apply=f_shift.*hf;
image_orignal=ifftshift(filter_apply);
image_filter_apply=abs(ifft2(image_orignal));
figure(2)
imshow(image_filter_apply,[])
title('practical performed by shruti');
figure(3)
mesh(hf)
figure(4)
imagesc(hf),colormap(gray);

6. GAUSSIAN HPF:

a=im2double(imread('circuit.tif'));
figure(1)
imshow(a)
title('original image')
[m n]=size(a);
f_transform=fft2(a);
f_shift=fftshift(f_transform);
p=m/2;
q=n/2;
d0=25;
for i=1:m
for j=1:n
distance=sqrt((i-p)^2+(j-q)^2);
high_filter(i,j)=1-exp(-(distance)^2/(2*(d0^2)));
end
end
filter_apply=f_shift.*high_filter;
image_orignal=ifftshift(filter_apply);
image_filter_apply=abs(ifft2(image_orignal));
figure(2)
imshow(image_filter_apply,[])
title('practical performed by shruti')
figure(4)
imagesc(high_filter),colormap(gray);

Related Posts :



0 comments:

Confused? Feel free to ask

Post a Comment