Aim:- Image Enhancement Frequency Domain
MSc Computer Science Image Processing Practical No. 2
Index of all Practicals ~ Click Here
A filter function from one of the following filters along with a set of values for the
parameter list is provided. For this filter function derive the an (k x k) filter mask for one of the values of k, k = 3,5,9. The filter mask is to be applied to the given input image and the enhanced image is to be displayed.
(i)Gaussian Low Pass Filter (ii) Butterworth Low Pass Filter
(iii)Ideal High Pass Filter (iv) Ideal Low Pass Filter
Code:- Image_enh_freq_dom.m
Output:-
Program Using Formulas:-
Code:- Butterworth_Low.m
Output:-
enter cut off : 15
enter order :10
Code:- Pract2_Low.m
Output:-
enter cut off : 15
MSc Computer Science Image Processing Practical No. 2
Index of all Practicals ~ Click Here
A filter function from one of the following filters along with a set of values for the
parameter list is provided. For this filter function derive the an (k x k) filter mask for one of the values of k, k = 3,5,9. The filter mask is to be applied to the given input image and the enhanced image is to be displayed.
(i)Gaussian Low Pass Filter (ii) Butterworth Low Pass Filter
(iii)Ideal High Pass Filter (iv) Ideal Low Pass Filter
Code:- Image_enh_freq_dom.m
clc;clear all;close all;
% ******** GAUSSIAN LOW PASS FILTER ********
f = imread('rice.png'); % Input Image
subplot(2,2,1);
imshow(f);
title('Original Image');
hsize = 12; % No. of rows and columns in H
sigma = 20; % Standard Deviation
H = fspecial('gaussian',hsize,sigma);
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Gaussian Low Pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram of an Input Image');
subplot(2,2,4);
imhist(g);
title('Histogram of Gaussian Low Pass Filtered Image');
% ******** GAUSSIAN LOW PASS FILTER ********
f = imread('rice.png'); % Input Image
subplot(2,2,1);
imshow(f);
title('Original Image');
hsize = 12; % No. of rows and columns in H
sigma = 20; % Standard Deviation
H = fspecial('gaussian',hsize,sigma);
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Gaussian Low Pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram of an Input Image');
subplot(2,2,4);
imhist(g);
title('Histogram of Gaussian Low Pass Filtered Image');
% ******** BUTTERWORTH LOW PASS FILTER ********
figure;
subplot(2,2,1);
imshow(f);
c_freq = 0.6;
title('Original Image');
H = butter(2,c_freq,'low');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Butterworth Low-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Butterworth Low-Pass Filtered Image');
figure;
subplot(2,2,1);
imshow(f);
c_freq = 0.6;
title('Original Image');
H = butter(2,c_freq,'low');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Butterworth Low-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Butterworth Low-Pass Filtered Image');
% ******** IDEAL HIGH PASS FILTER ********
figure;
subplot(2,2,1);
imshow(f);
title('Original Image');
n = 5;
Wn = 0.3;
H = fir1(n,Wn,'High');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Ideal High-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Ideal High-Pass Filtered Image');
figure;
subplot(2,2,1);
imshow(f);
title('Original Image');
n = 5;
Wn = 0.3;
H = fir1(n,Wn,'High');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Ideal High-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Ideal High-Pass Filtered Image');
% ******** IDEAL LOW PASS FILTER ********
figure;
subplot(2,2,1);
imshow(f);
title('Original Image');
n = 28;
Wn = 0.02;
H = fir1(n,Wn,'Low');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Ideal Low-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Ideal Low-Pass Filtered Image');
figure;
subplot(2,2,1);
imshow(f);
title('Original Image');
n = 28;
Wn = 0.02;
H = fir1(n,Wn,'Low');
g = imfilter(f,H);
subplot(2,2,2);
imshow(g);
title('Ideal Low-pass Filtered Image');
subplot(2,2,3);
imhist(f);
title('Histogram');
subplot(2,2,4);
imhist(g);
title('Histogram of Ideal Low-Pass Filtered Image');
Output:-
Program Using Formulas:-
Code:- Butterworth_Low.m
% ******** BUTTERWORTH LOW PASS FILTER ********
a=imread('Ranch house.jpg');
r1=double(a);
c=size(r1);
N=c(1);
D0=input('enter cut off : ');
n=input('enter order :');
for u=1:1:c(1)
for v= 1:1:c(2);
D=((u-N/2)^2+(v-N/2)^2)^0.5;
H(u,v)=1/(1+(D/D0)^(2*n));
end
end
x=fft2(r1);
v=fftshift(x);
v1=v.*H;
g=(abs(ifft2(v1)));
figure(1);
imshow(uint8(g));
figure(2);
imshow(uint8(r1));
figure(3);
mesh(H);
figure(4),imagesc(H),colormap(gray)
a=imread('Ranch house.jpg');
r1=double(a);
c=size(r1);
N=c(1);
D0=input('enter cut off : ');
n=input('enter order :');
for u=1:1:c(1)
for v= 1:1:c(2);
D=((u-N/2)^2+(v-N/2)^2)^0.5;
H(u,v)=1/(1+(D/D0)^(2*n));
end
end
x=fft2(r1);
v=fftshift(x);
v1=v.*H;
g=(abs(ifft2(v1)));
figure(1);
imshow(uint8(g));
figure(2);
imshow(uint8(r1));
figure(3);
mesh(H);
figure(4),imagesc(H),colormap(gray)
Output:-
enter cut off : 15
enter order :10
Code:- Pract2_Low.m
% ******** IDEAL LOW PASS FILTER ********
a=imread('Ranch house.jpg');
r1=double(a);
c=size(r1);
N=c(1);
D0=input('enter cut off : ');
for u=1:1:c(1)
for v= 1:1:c(2);
D=((u-N/2)^2+(v-N/2)^2)^0.5;
if D>D0
H(u,v)=1;
else H(u,v)=0;
end
end
end
x=fft2(r1);
v=fftshift(x);
v1=v.*H;
g=(abs(ifft2(v1)));
figure(1);
imshow(uint8(g));
figure(2);
imshow(uint8(r1));
figure(3);
mesh(H);
figure(4),imagesc(H),colormap(gray)
a=imread('Ranch house.jpg');
r1=double(a);
c=size(r1);
N=c(1);
D0=input('enter cut off : ');
for u=1:1:c(1)
for v= 1:1:c(2);
D=((u-N/2)^2+(v-N/2)^2)^0.5;
if D>D0
H(u,v)=1;
else H(u,v)=0;
end
end
end
x=fft2(r1);
v=fftshift(x);
v1=v.*H;
g=(abs(ifft2(v1)));
figure(1);
imshow(uint8(g));
figure(2);
imshow(uint8(r1));
figure(3);
mesh(H);
figure(4),imagesc(H),colormap(gray)
Output:-
enter cut off : 15
0 comments:
Confused? Feel free to ask
Post a Comment